Skip to main content

Advertisement

Log in

Genetic structure of Leucojum aestivum L. in the Po Valley (N-Italy) drives conservation management actions

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the genetic variation and population structure of the geophyte Leucojum aestivum L. across the Po river valley (N-Italy), to inform conservation management actions with the selection of most suitable source populations for translocation purposes. L. aestivum is self-incompatible and occurs in S-Europe in fragmented wetlands and lowland forests along rivers. The species is particularly interesting for habitat restoration practices for its simplicity of ex situ conservation and cultivation. AFLP analyses were carried out on 16 fragmented populations, using four primer combinations. Correlations between genetic variation and demographic and ecological traits were tested. AFLP produced a total of 202 bands, 95.5% of which were polymorphic. Our results suggest that L. aestivum holds low to moderate levels of genetic diversity (mean Nei’s genetic diversity: H = 0.125), mostly within-population. We found a gradient of two main biogeographic groups along western and eastern populations, while the STRUCTURE analysis found that the most likely number of clusters was K = 3, shaping a partially consistent pattern. We explain the unusual negative correlation between genetic variation and population size with the high rate of vegetative reproduction. The levels of population differentiation suggest that fragmentation in L. aestivum populations has occurred, but that an active gene flow between fragmented populations still exists, maintained by flooding events or pollinators. Conservation management actions should improve habitat connectivity, especially for pollinators that vehicle upstream gene flow. Moreover, the west–east structure due to the lithological composition of the gravel and sand forming the alluvial plain of the Po river, should be considered when selecting source populations for translocation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeli T, Cauzzi P, Rossi G, Adorni M, Vagge I, Parolo G, Orsenigo S (2016) Restoring population structure and dynamics in translocated species: learning from wild populations. Plant Ecol 217:183–192

    Article  Google Scholar 

  • AdBPo (2009). Il rischio alluvionale sui fiumi di pianura - Stato dell’arte in materia di valutazione e gestione del rischio alluvioni. Diabasis - Autorità di Bacino Fiume Po, Parma

    Google Scholar 

  • Adorni M (2016) La vegetazione legnosa in Emilia. Censimento e analisi delle fitocenosi arboree e arbustive. Istituto per i Beni Artistici Culturali della Regione Emilia-Romagna, Bologna

    Google Scholar 

  • Alvarenga LDP, Pôrto KC (2007) Patch size and isolation effects on epiphytic and epiphyllous bryophytes in the fragmented Brazilian Atlantic Forest. Biol Conserv 134:415–427

    Article  Google Scholar 

  • Alvarez N, Thiel-Egenter C, Tribsch A et al (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640

    Article  PubMed  Google Scholar 

  • Arrigo N, Holderegger R, Alvarez N (2012) Automated scoring of AFLPs using RawGeno v 2.0, a free R CRAN library. Methods Mol Biol 888:155–175

    Article  PubMed  Google Scholar 

  • Arrigo N, Tuszynski JW, Ehrich D, Gerdes T, Alvarez N (2009) Evaluating the impact of scoring parameters on the structure of intra–specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinform 10:33

    Article  Google Scholar 

  • Blasi C (2010) La vegetazione d’Italia con carta delle serie di vegetazione in scala 1:500.000. Palombi Editore, Roma

    Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  PubMed  CAS  Google Scholar 

  • Bruni I, Gentili R, De Mattia F, Cortis P, Rossi G, Labra M (2013) A multi-level analysis to evaluate the extinction risk and the conservation strategy of the aquatic fern Marsilea quadrifolia L. in Europe. Aquat Bot 111:35–44

    Article  Google Scholar 

  • Bupp G, Ricono A, Peterson CL, Pruett CL (2017) Conservation implications of small population size and habitat fragmentation in an endangered lupine. Conserv Genet 18:77–88

    Article  Google Scholar 

  • Despres L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 11:2337–2347

    Article  PubMed  CAS  Google Scholar 

  • Di Battista JD (2008) Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156

    Article  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Duchoslav M, Staňková H (2015) Population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot 50:123–136

    Article  Google Scholar 

  • Eckert CG, Kalisz S, Geber MA et al (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43

    Article  PubMed  Google Scholar 

  • EEA (2006) European forest types categories and types for sustainable forest management reporting and policy. EEA technical reports, 9, European Environment Agency, Copenhagen

  • Ellis AG, Weis AE (2006) Coexistence and differentiation of ‘flowering stones’: the role of local adaptation to soil microenvironment. J Ecol 94:322–335

    Article  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Ezard THG, Travis JMJ (2006) The impact of habitat loss and fragmentation on genetic drift and fixation time. Oikos 114:367–375

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 26:131–140

    Article  Google Scholar 

  • Gargano D, Fenu D, Bernardo L (2017) Local shifts in floral biotic interactions in habitat edges and their effect on quantity and quality of plant offspring. AoB Plants. https://doi.org/10.1093/aobpla/plx031

    Article  PubMed  PubMed Central  Google Scholar 

  • Genovese E et al (2007) An assessment of weather-related risk in Europe: maps of flood and drought risks. EC Joint Research Center, Ispra

    Google Scholar 

  • Godefroid S, Piazza C, Rossi G et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hoehn M, Sarre D, Henle K (2007) The tales of two geckos: does dispersal prevent extinction in recently fragmented populations? Mol Ecol 16:3299–3312

    Article  PubMed  CAS  Google Scholar 

  • Huff DD, Miller LM, Chizinski CJ, Vondracek B (2011) Mixed-source reintroductions lead to outbreeding depression in second-generation descendants of a native North American fish. Mol Ecol 20:4246–4258

    Article  PubMed  Google Scholar 

  • IUCN (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland. IUCN Species Survival Commission, Switzerland

    Google Scholar 

  • Jacquemyn H, Honnay O, Galbusera P, Roldán-Ruiz I (2004) Genetic structure of the forest herb Primula elatior in a changing landscape. Mol Ecol 13:211–219

    Article  PubMed  CAS  Google Scholar 

  • Jacquemyn H, De Meester L, Jongejans E, Honnay O (2012) Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. J Ecol 100:76–87

    Article  Google Scholar 

  • Jordán-Pla A, Estrelles E, Boscaiu M, Soriano P, Vicente O, Mateu-Andrés I (2009) Genetic variability in the endemic Leucojum valentinum. Biol Plantarum 53:317–320

    Article  Google Scholar 

  • Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests—completely paid after 160 years? Biol Conserv 182:164–172

    Article  Google Scholar 

  • Lansdown RV (2014) Leucojum aestivum. The IUCN red list of threatened species 2014: T164488A45461549. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T164488A45461549.en. Accessed on 26 Jan 2017

  • Lawrence BA, Kaye TN (2011) Reintroduction of Castilleja levisecta: effects of ecological similarity, source population genetics, and habitat quality. Restor Ecol 19:166–176

    Article  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Luoy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681

    Article  Google Scholar 

  • Mable BK, Adam A (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McKay K, Christian CE, Harrison S, Rice KJ (2005) How local is local? A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Medrano M, López-Perea E, Herrera CM (2014) Population genetics methods applied to a species delimitation problem: endemic trumpet daffodils (Narcissus section pseudonarcissi) from the southern Iberian Peninsula. Int J Plant Sci 175:501–517

    Article  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196

    Article  Google Scholar 

  • Ministero delle Politiche Agricole Alimentari e Forestali (MiPAAF) (2000) Metodi di analisi chimica del suolo. Franco Angeli, Milano

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet Lond 41:225–233

    Article  CAS  Google Scholar 

  • Orsenigo S, Gentili R, Smolders AJP, Efremov A, Rossi G, Ardenghi NMG, Citterio S, Abeli T (2016) Reintroduction of a dioecious aquatic macrophyte (Stratiotes aloides L.) regionally extinct in the wild. Interesting answers from genetics. Aquatic Conserv 27:10–23

    Article  Google Scholar 

  • Ortego J, Aguirre MP, Noguerales V, Cordero PJ (2015) Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 8:621–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulou A, Knowles LL (2016) Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proc Natl Acad Sci USA 113:8018–8024

    Article  PubMed  CAS  Google Scholar 

  • Paracchini ML, Bulgheroni C, Borreani G, Tabacco E, Banterle A, Bertoni D, Rossi G, Parolo G, Origgi R, De Paola C (2015) A diagnostic system to assess sustainability at a farm level, the SOSTARE model. Agric Syst 133:35–53

    Article  Google Scholar 

  • Parolo G, Abeli T, Rossi G, Dowgiallo G, Matthies D (2011) Biological flora of Central Europe: Leucojum aestivum L. Perspect Plant Ecol 13:319–330

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit S, Griffiths L, Smart SS, Smith GM, Stuart RC, Wright SW (2004) Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc Ecol 19:463–471

    Article  Google Scholar 

  • Pollux BJA, Jong MDE, Steegh A, Verbruggen E, van Groenendael JM, Ouborg NJ (2007) Reproductive strategy, clonal structure and genetic diversity in populations of the aquatic macrophyte Sparganium emersum in river systems. Mol Ecol 16:313–325

    Article  PubMed  CAS  Google Scholar 

  • Powolny M, Poschlod P, Reisch C (2016) Genetic variation in Silene acaulis increases with population age. Botany 94:241–247

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly O (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 115:1493–1511

    Article  Google Scholar 

  • Reisch C, Schmidkonz S, Meier K, Schöpplein Q, Meyer C, Hums C, Putz C, Schmid C (2017) Genetic diversity of calcareous grassland plant species depends on historical landscape configuration. BMC Ecol 17:19. https://doi.org/10.1186/s12898-017-0129-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruffo S (ed) (2002) Woodlands of the Po plain. Italian Ministry of the Environment and Territory Protection, Friuli Museum of Natural History, Graphic lines, Udine

    Google Scholar 

  • Sanaa A, Zouaghi O, Boussaid M, Ben Fadhel N (2010) Genetic diversity and population structure of tunisian Pancratium maritimum L. (Amaryllidaceae). Acta Hortic 853:61–68. https://doi.org/10.17660/ActaHortic.2010.853.6

    Article  Google Scholar 

  • Shao J-W, Wang J, Xu Y-N, Pan Q, Shi Y, Kelso S, Lv G-S (2015) Genetic diversity and gene flow within and between two different habitats of Primula merrilliana (Primulaceae), an endangered distylous forest herb in eastern China. Bot J Linn Soc 179:172–189

    Article  Google Scholar 

  • Tockner C, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie, Végétale. Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Zaya DN, Molano-Flores B, Feist MA, Koontz JA, Coons J (2017) Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae). Conserv Genet 18:171–180

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by University of Milano-Bicocca, University of Pavia, and by the project “CORINAT”, D.G. Agricoltura, Regione Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Abeli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentili, R., Abeli, T., Parolo, G. et al. Genetic structure of Leucojum aestivum L. in the Po Valley (N-Italy) drives conservation management actions. Conserv Genet 19, 827–838 (2018). https://doi.org/10.1007/s10592-018-1057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1057-8

Keywords

Navigation