Skip to main content

Advertisement

Log in

Restoring population structure and dynamics in translocated species: learning from wild populations

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Conservation of Leucojum aestivum, a wetland-dependent species distributed in Europe and west Asia, should aim to reduce the fragmentation of wild stands, through the establishment of new populations. However, density-dependent dynamics occur in L. a estivum. For instance, fruit set and seed set increase with increasing plant density. In this study, we evaluate the effect of plant density on translocation success of two recently established populations of L. a estivum. Twenty-six populations of L. a estivum were investigated in northern Italy to find out differences in population traits (size, density, age structure, and reproductive performance) between populations from different habitats. Data obtained were used to establish two new populations of the species differing for population density (high H, mirroring the typical plant density of a wild population in Salix alba woods and low L, in which plant density was halved compared to H), to evaluate the role of density-dependent dynamics on the translocation success. 4 years after the translocation, H produced seedlings, while L did not. Moreover, H produced a significantly higher number of fruits per fruiting plant and higher fruit set. Seed set was also greater in H than in L, while mortality was greater in L than in H, but differences were not significant. Our results suggest that population density is an important factor to account for in newly established populations, especially in those species showing density-dependent population dynamics. Moreover, the imitation of successful within-population dynamics occurring in natural stable populations may increase the translocation success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeli T, Jäkäläniemi A, Wannas L, Mutikainen P, Tuomi J (2013) Pollen limitation and fruiting failure related to canopy closure in Calypso bulbosa (Orchidaceae), a northern food-deceptive orchid with a single flower. Bot J Linn Soc 171:744–750. doi:10.1111/boj.12014

    Article  Google Scholar 

  • Abeli T, Rossi G, Smolders AJP, Orsenigo S (2014) Nitrogen pollution negatively affects Stratiotes aloides in Central-Eastern Europe. Implications for translocation actions. Aquat Conserv 24:724–729. doi:10.1002/aqc.2497

    Article  Google Scholar 

  • Albrecht MA, McCue KA (2010) Changes in demographic processes over long time scales reveal the challenge of restoring an endangered plant. Restor Ecol 18:235–243. doi:10.1111/j.1526-100X.2009.00584.x

    Article  Google Scholar 

  • Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421. doi:10.1890/03-8024

    Article  Google Scholar 

  • Aurambout JP, Endress AG, Deal BM (2005) A spatial model to estimate habitat fragmentation and its consequences of long-term survival of animal populations. Environ Monit Assess 109:199–225. doi:10.1007/s10661-005-6266-1

    Article  CAS  PubMed  Google Scholar 

  • Ayan KA, Sait Kurtal E, Cüneit C, Kevseroglu K (2004) Bulb yield and some plant characters of summer snow flake (Leucojum aestivum L.) under shading as affected by GA3 and NAA at different concentrations. J Agron 3:296–300. doi:10.3923/ja.2004.296.300

    Article  Google Scholar 

  • Berkov S, Ivanov I, Georgiev V, Codina C, Pavlov A (2014) Galanthamine biosynthesis in plant in vitro systems. Eng Life Sci 14:643–650. doi:10.1002/elsc.201300159

    Article  CAS  Google Scholar 

  • Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM et al (2014) Plant communities of Italy: the vegetation prodrome. Plant Biosyst 148:728–814. doi:10.1080/11263504.2014.948527

    Article  Google Scholar 

  • Bogdanova Y, Stoeva T, Yanev S, Pandova B, Molle E, Burrus M, Stanilova M (2009) Influence of plant origin on propagation capacity and alkaloid biosynthesis during long-term in vitro cultivation of Leucojum aestivum L. In vitro cell. Dev Plant 45:458–465. doi:10.1007/s11627-008-9178-2

    Article  CAS  Google Scholar 

  • Burd M (1994) Bateman’s Principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:63–139. doi:10.1007/BF02856594

    Article  Google Scholar 

  • Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856. doi:10.1111/1365-2745.12232

    Article  PubMed  PubMed Central  Google Scholar 

  • Cursach J, Rita J (2012) Reproductive biology and reproductive output assessment in natural and introduced subpopulations of Apium bermejoi, a ‘Critically Endangered’ endemic plant from Menorca (western Mediterranean). Nord J Bot 30:754–768. doi:10.1111/j.1756-1051.2012.01437.x

    Article  Google Scholar 

  • Dahlgren JP, Östergård H, Ehrlén J (2014) Local environment and density-dependent feedbacks determine population growth in a forest herb. Oecologia 176:1023–1032. doi:10.1007/s00442-014-3073-9

    Article  PubMed  Google Scholar 

  • Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B et al (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98:188–196. doi:10.1111/j.1365-2745.2009.01590.x

    Article  Google Scholar 

  • Demier A (2014) Medical resource value appraisal for Leucojum aestivum in Turkey. Am J Alzheimers Dis 29:448–451. doi:10.1177/1533317514535334

    Article  Google Scholar 

  • Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot 18:9–166

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Falk DA, Palmer MA, Zedler JB (2004) Foundations of restoration ecology. Island Press, Washington

    Google Scholar 

  • Gehring TM, Swihart RK (2003) Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv 109:283–295. doi:10.1016/S0006-3207(02)00156-8

    Article  Google Scholar 

  • Godefroid S, Piazza C, Rossi G, Buord S, Stevens A, Aguraiuja R et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682. doi:10.1016/j.biocon.2010.10.003

    Article  Google Scholar 

  • Halsey SJ, Bell TJ, McEachern K, Pavlovic NB (2015) Comparison of reintroduction and enhancement effects on metapopulation viability. Restor Ecol 23:375–384. doi:10.1111/rec.12191

    Article  Google Scholar 

  • Hegland SJ (2014) Floral neighbourhood effects on pollination success in red clover are scale-dependent. Funct Ecol 28:561–568. doi:10.1111/1365-2435.12223

    Article  Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538. doi:10.1111/j.1365-2311.2006.00812.x

    Article  Google Scholar 

  • Kirchner F, Robert A, Colas B (2006) Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J Appl Ecol 43:1011–1021. doi:10.1111/j.1365-2664.2006.01179.x

    Article  Google Scholar 

  • Lammi A, Kuitunen M (1995) Deceptive pollination of Dactylorhiza incarnata : an experimental test of the magnet species hypothesis. Oecologia 101:500–503

    Article  Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269. doi:10.1007/BF02763457

    Article  Google Scholar 

  • Landolt E (1977) Ökologische Ziegerwerte zu Schweizer Flora. Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich

    Google Scholar 

  • Manzo A, Panseri S, Vagge I, Giorgi A (2014) Volatile fingerprint of Italian populations of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry. Molecules 19:7913–7936. doi:10.3390/molecules19067913

    Article  PubMed  Google Scholar 

  • Maschinski J, Haskins KE (2012) Plant reintroduction in a changing climate, promises and perils. Island press, Washington, DC

    Book  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation succesful? Aust J Bot 56:187–196. doi:10.1071/BT07173

    Article  Google Scholar 

  • Paracchini ML, Bulgheroni C, Borreani G, Tabacco E, Banterle A, Bertoni D, Rossi G, Parolo G, Origgi R, De Paola C (2015) A diagnostic system to assess sustainability at a farm level, the SOSTARE model. Agr Syst 133:35–53. doi:10.1016/j.agsy.2014.10.004

    Article  Google Scholar 

  • Parolo G, Abeli T, Rossi G, Dowgiallo G, Matthies D (2011) Biological Flora of Central Europe: Leucojum aestivum L. Perspect Plant Ecol 13:319–330. doi:10.1016/j.ppees.2011.05.004

    Article  Google Scholar 

  • Poulsen JR, Osenberg CW, Clark CJ, Levey DJ, Bolker BM (2007) Plants as reef fish: fitting the functional form of seedling recruitment. Am Nat 170:167–183. doi:10.1086/518945

    Article  CAS  PubMed  Google Scholar 

  • Rossi G, Montagnani C, Gargano D, Peruzzi L, Abeli T, Ravera S, et al. (eds) (2013) Lista Rossa della Flora Italiana. 1. Policy species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare

  • Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134. doi:10.1016/S0169-5347(99)01799-1

    Article  Google Scholar 

  • Steven JC, Waller DM (2007) Isolation affects reproductive success in low-density but not high-density populations of two wind-pollinated Thalictrum species. Plant Ecol 190:131–141. doi:10.1007/s11258-006-9196-2

    Article  Google Scholar 

  • Van der Meer S, Jacquemyn H (2015) Genetic diversity and spatial genetic structure of the grassland perennial Saxifraga granulata along two river systems. PLoS One 10(6):e0130463. doi:10.1371/journal.pone.0130463

    Article  PubMed  PubMed Central  Google Scholar 

  • Thuiller W (2007) Climate change and ecologist. Nature 448:550–552. doi:10.1038/448550a

    Article  CAS  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi:10.1016/0169-5347(96)10045-8

    Article  CAS  PubMed  Google Scholar 

  • Warren RJ II, Bahn V, Bradford MA (2011) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881. doi:10.1111/j.1600-0706.2011.20174.x

    Article  Google Scholar 

  • Waser NM, Campbell DR, Price MV, Brody AK (2010) Density-dependent demographic responses of a semelparous plant to natural variation in seed rain. Oikos 119:1929–1935. doi:10.1111/j.1600-0706.2010.18429.x

    Article  Google Scholar 

  • Weed AS, Schwarzländer M (2014) Density dependence, precipitation and biological control agent herbivory influence landscape-scale dynamics of the invasive Eurasian plant Linaria dalmatica. J App Ecol 51:825–834. doi:10.1111/1365-2664.12226

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to V. Dominione, A. Morini, L. Zubani, S. Pedrini, E. Vegini, F. Nai Oleari, M. Cere, C. Albrecht and M.I. Manisco, (University of Pavia), M. Donati and L. Ghillani for their valuable contribution during field work. The authors thank D. Matthies (University of Marburg) for his precious suggestions during the study of wild populations. The authors thank E. Ottolini and E. Fior (LIFE07 NAT/IT/000499 “Pianura Parmense” Staff Members) for their logistic and practical support during the translocation. The authors are also grateful to A. Manzi and S. Panzeri (University of Milan) for the determination of VOC in flowers of L. a estivum. The translocation has received financial support from the LIFE + project 2007 NAT/IT/000499 “Pianura Parmense.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Orsenigo.

Additional information

Communicated by Dr. Thomas Abeli and Prof. Kingsley Dixon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeli, T., Cauzzi, P., Rossi, G. et al. Restoring population structure and dynamics in translocated species: learning from wild populations. Plant Ecol 217, 183–192 (2016). https://doi.org/10.1007/s11258-015-0529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0529-x

Keywords

Navigation