Skip to main content
Log in

Genetic identity of common buckwheat (Fagopyrum esculentum Moench) landraces locally cultivated in the Alps

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The conservation of landraces in Europe is challenging because very often they have already disappeared or cannot be properly identified, which in turn prevents any possibility for their utilization. This work deals with the collection of molecular and historical data to identify and study the original landraces of common buckwheat (Fagopyrum esculentum Moench), locally cultivated in Northern Italy (Valtellina) and to date surviving among other commercial varieties, recently introduced in the same areas of the Alps. As plant materials of F. esculentum, we analyzed a number of Italian accessions along with two foreign accessions from Poland and Nepal, for a total of 174 individuals. Molecular investigations were based on a set of eight nuclear SSR marker loci. The mean observed heterozygosity over all accessions was equal to Ho = 0.466, being significantly lower than the expected heterozygosity (He = 0.764). A major finding was the recognition of a marked inbreeding rate (Fit = 0.387) and a reduced fixation index (Fst = 0.061), indicating that most genetic variation is found within populations. A significant overall gene flow among accessions was found (Nm = 3.846). Results indicated that only two of the examined accessions, the so-called “Nustran” and “Curunin”, could be considered, authentic Valtellina landraces. On the basis of results, we successfully developed a multi-locus marker system and identified a number of co-dominant marker alleles suitable for genetic traceability and authenticity certification of a “Nustran” and a “Curunin” autochthonous landraces of Valtellina and its food derivatives (i.e., Pizzoccheri, Polenta taragna).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alenius T, Mökkönen T, Lahelma A (2013) Early farming in the northern boreal zone: reassessing the history of land use in southeastern Finland through high-resolution pollen analysis. Geoarchaeology 28:1–24

    Article  Google Scholar 

  • Barcaccia G, Albertini E, Tavoletti S, Falcinelli M, Veronesi F (1999) AFLP fingerprinting in Medicago spp.: its development and application in linkage mapping. Plant Breed 118:335–340

    Article  CAS  Google Scholar 

  • Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet Res 89:93–106

    Article  CAS  PubMed  Google Scholar 

  • Brush SB (1999) Genes in the field: on farm conservation of crop diversity. IPGRI, IDRC Lewis, Boca Raton

    Book  Google Scholar 

  • Camacho V, Taina C, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Res 3:373–384

    Article  Google Scholar 

  • Cavagna P, Camerini G, Fibiani M, Andreani L, Cella R, Concia L, Lo Scalzo R (2012) Characterization of the rescued ‘Voghera’ sweet pepper landrace grown in northern Italy. Span J Agric Res 10:1059–1069

    Article  Google Scholar 

  • Cawoy V, Ledent J-F, Kinet J-M, Jaquemart A-M (2009) Floral biology of Common buckwheat (Fagopyrumn esculentum Moench). Eur J Plant Sci Biotechnol 3:1–9

    Google Scholar 

  • Chen QF, Hsam SLK, Zeller FJ (2004) A study of cytology, isozyme, and interspecific hybridization on the big-achene group of buckwheat species (Fagopyrum, Polygonaceae). Crop Sci 44:1511–1518

    Article  Google Scholar 

  • de Carvalho MAAP, Bebeli PJ, Bettencourt E, Costa G, Dias S, Dos Santos TMM, Slaski JJ (2013) Cereal landraces genetic resources in worldwide GeneBanks: a review. Agron Sustain Dev 33:177–203

    Article  CAS  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Esquinas-Alcazar JT (1993) Plant Genetic Resources. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman & Hall, London, pp 33–51

    Chapter  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferranti R, Pirola A, Penati F (2002) Il paesaggio vegetale della Provincia di Sondrio, Suppl. Il Naturalista Valtellinese, Atti del Museo Civico di Storia Naturale di Morbegno 13:38

  • Ferriol M, Picό B, Nuez F (2004) Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J Am Soc Hortic Sci 129:60–69

    CAS  Google Scholar 

  • Fideghelli C, Engel P (2009) Biodiversity and local genetic resources: from knowledge to exploitation. Acta Hortic 817:295–310

    Article  Google Scholar 

  • Giacomini V (1954) Il grano siberiano (Fagopyrum tataricum) in Valtellina. Ramponi, Sondrio

    Google Scholar 

  • Gwanama C, Labuschagne MT, Botha AM (2000) Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica 113:19–24

    Article  CAS  Google Scholar 

  • Hammer K, Knüpffer H, Laghetti G, Perrino P (1999) Seeds from the Past. A catalogue of crop germplasm in Central and North Italy. IdG, Bari

    Google Scholar 

  • Iwata H, Imon K, Tsumura Y, Ohsawa R (2005) Genetic diversity among Japanese indigenous Common buckwheat (Fagopyrum esculentum) cultivars as determined from AFLP and SSR markers and quantitative agronomic traits. Genome 48:367–377

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Paris HS, Parrish DC (2007) The Cucurbits of mediterranean antiquity: identification of taxa from ancient images and descriptions. Ann Bot 100:1441–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaradat AA (2014) The vanishing wheat landraces of the Fertile Crescent. Emir J Food Agric 26:203–217

    Article  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong PH et al (2008) A global perspective of the richness and evenness of tradional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci USA 105:5326–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi T, Ohnishi O (2007) Close genetic relationship between cultivated and natural populations of Common buckwheat in the Sanjiang area is not due to recent gene flow between them—An analysis using microsatellites markers. Genes Genet Syst 82:53–64

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Iwata H, Yashiro K, Tsumura U, Ohsawa R, Yasui Y, Ohnishi O (2006) Development and characterization of microsatellite markers for common buckwheat. Breed Sci 56:277–285

    Article  CAS  Google Scholar 

  • Laghetti G, Hammer K, Perrino P (1993) Collecting in northwest Italy. FAO/IBPGR Plant Genetic Resources Newsletter 91(92):23

    Google Scholar 

  • Levene H (1949) On a matching problem in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • McDermott M, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Mendler-Drienyovszki N, Cal AJ, Dobránszki J (2013) Progress and prospects for interspecific hybridization in buckwheat and the genus Fagopyrum. Biotechnol Adv 31:1768–1775

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellite as markers in plant genetics. Plant J 3:175–182

    Article  CAS  PubMed  Google Scholar 

  • Neal D (2004) Introduction to population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Negri V, Maxted N, Veteläinen M (2009) European Landrace Conservation: an introduction. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation management and use. Biodiversity technical bullettin 15. Bioversity International, Rome

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolè S, Erickson DL, Ambrosi D, Bellucci B, Lucchin M, Papa R, Kress WJ, Barcaccia G (2011) Biodiversity studies in Phaseolus species by DNA barcoding. Genome 54:529–545

    Article  PubMed  Google Scholar 

  • Ohnishi O (1993) Population genetics of cultivated Common buckwheat, Fagopyrum esculentum Moench. VIII. Local differentiation of land races in Europe and the silk road. Jap J Genet 68:303–316

    Article  CAS  Google Scholar 

  • Ohnishi O (1994) Buckwheat in Karakoram and the Hindukush. Fagopyrum 14:17–25

    Google Scholar 

  • Ohnishi D (1998) Search for the wild ancestor of buckwheat I. Description of new Fagopyrum species and their distribution in China. Fagopyrum 15:18–28

    Google Scholar 

  • Ohnishi O, Asano N (1999) Genetic diversity of Fagopyrum homotropicum, a wild species related to Common Buckwheat. Genet Resour Crop Evol 46:389–398

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx v. 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pessina D, Gentili R, Barcaccia G, Nicolé S, Rossi G, Barbesti S, Sgorbati S (2011) DNA content, morphometric and molecular marker analyses of Citrus limonimedica Lush., C. limon (L.) Burm. and C. medica L. for the determination of their variability and genetic relationships within the genus Citrus. Sci Hortic 129:663–673

    Article  CAS  Google Scholar 

  • Raggi R, Tiranti B, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530

    Article  Google Scholar 

  • Rohlf EJ (1993) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc, New York

    Google Scholar 

  • Song JY, Lee G-A, Yoon M-S, Ma K-H, Choi Y-M, Lee J-R, Jung Y, Park H-J, Kim C-K, Lee M-C (2011) Analysis of genetic diversity and population structure of Buckwheat (Fagopyrum esculentum Moench) landraces of Korea using SSR markers. Korean J Plant Res 24:702–711

    Article  Google Scholar 

  • Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation management and use. Biodiversity technical bullettin 15. Biodiversity International, Rome

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, variability within and among natural populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T, Ye ZH, Mao JX (1997) POPGENE: the user-friendly shareware for population genetic analysis. University of Alberta, Molecular Biology and Biotechnology Centre, Edmonton

    Google Scholar 

  • Zeller FJ, Hsam SLK (2001) Genetic analysis of morphological characteristics in Common Buckwheat (Fagopyrum esculentum Moench). Proceedings of the 8th ISB, pp 214–217

Download references

Acknowledgments

This research was partially funded by the project “Produzione di Potenziali Varietà da Conservazione ortive ed agrarie Lombarde Registrate” (V.C.L.R.) funded by Regione Lombardia PSR 2007-2013, Misura 124. Authors thank Dr. Pietro Roccatagliata and Mr. Patrizio Mazzucchelli for seed provision and important information on the history of buckwheat cultivation in Valtellina valley and Dr. Giorgio Perini (La Pimpinella, Pergine Valsugana, Trento) for seed provision of the Trento province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gentili.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcaccia, G., Volpato, M., Gentili, R. et al. Genetic identity of common buckwheat (Fagopyrum esculentum Moench) landraces locally cultivated in the Alps. Genet Resour Crop Evol 63, 639–651 (2016). https://doi.org/10.1007/s10722-015-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0273-z

Keywords

Navigation